

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Studies of the Electronic Structures in Mononitronaphthol-2 Derivatives by the UV and vis Spectroscopic Methods

G. Rusek^a; L. Prajer-janczewska^a

^a Institute of Chemistry, University of Wroclaw, Wroclaw, Poland

To cite this Article Rusek, G. and Prajer-janczewska, L.(1978) 'Studies of the Electronic Structures in Mononitronaphthol-2 Derivatives by the UV and vis Spectroscopic Methods', *Spectroscopy Letters*, 11: 6, 381 — 387

To link to this Article: DOI: 10.1080/00387017808067759

URL: <http://dx.doi.org/10.1080/00387017808067759>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES OF THE ELECTRONIC STRUCTURES IN MONONITRONAPHTHOL-2 DERIVATIVES BY THE UV AND VIS SPECTROSCOPIC METHODS

G.Rusek and L.Prajer-Janczewska
Institute of Chemistry, University of Wrocław
F.Joliot-Curie 14, 50-383 Wrocław, Poland

A shift of the K band in the spectrum of mono-substituted benzene C_6H_5-X may be to some extent considered a measure of the electron donor or acceptor strength of the X substituent¹. However, it should be emphasized that the knowledge of only $\Delta\lambda_{H,X}^{\text{exp.}}$ value does not allow to determine the spectral nature of a certain unknown X substituent since the bathochromic shift of the K band occurs both - when this substituent is auxochromic /electron donor/ or when it is anti-auxochromic /electron acceptor/.

It was found in many instances² that the K band is particularly sensitive to the substitution of the

aromatic ring. On substituting the ring with the X and Y substituent of opposite natures the K band shift is large, larger than the additive effect of the substituent. These deviations are the larger, the more pronounced are the electron donor or acceptor properties of the substituent. It seems³ that in the case of disubstituted benzene derivatives only the para isomers absorb as single chromophores owing to maximum coupling between the substituent and the ring. On the other hand, in the meta and ortho isomers the monosubstituted chromophores are partially isolated and, hence, the spectra of these disubstituted benzene derivatives are hybrid spectra of monosubstituted compounds. A convenient measure of deviations from additivity is the value²:

$$\frac{\Delta\lambda_{X,Y}^{\text{exp.}}}{\Delta\lambda_{X,Y}^{\text{calc.}}} = \frac{\lambda_{X,Y}^{\text{exp.}} - \lambda_{H,H}^{\text{exp.}}}{\lambda_{H,X}^{\text{exp.}} - \lambda_{H,H}^{\text{exp.}} + \lambda_{H,Y}^{\text{exp.}} - \lambda_{H,H}^{\text{exp.}}} \leq 1$$

The ratio $\Delta\lambda_{X,Y}^{\text{exp.}} / \Delta\lambda_{X,Y}^{\text{calc.}}$ is lower than unity if X=Y, or, if X and Y have the same spectral nature. On the other hand, it is higher than unity if X and Y differ in their spectral natures.

The results of calculations with the above assumption in mind, for the nitro derivatives of naphthol-2 are summarized in Table 1.

TABLE 1

Calculation of the measure of deviation from additivity for mononitro derivatives of naphthol-2

		$\lambda_{X,Y}^{\text{exp.}} / \text{nm} /$	$\Delta\lambda_{X,Y}^{\text{exp.}}$	$\Delta\lambda_{X,Y}^{\text{calc.}}$	$\frac{\Delta\lambda_{X,Y}^{\text{exp.}}}{\Delta\lambda_{X,Y}^{\text{calc.}}}$
NO ₂	OH	/lg ϵ /			
-	-	275 /5,068/	-	-	-
-	2	286 /3,518/	11	-	-
1	-	327 /3,623/	52	-	-
2	-	303 /3,908/	28	-	-
1	2	370 /3,344/	95	63	1,51
3	2	323 /3,873/	48	39	1,12
4	2	340 /3,480/	65	63	1,03
5	2	336 /3,592/	61	63	0,97
6	2	341 /3,981/	66	39	1,69
7	2	308 /3,916/	33	39	0,85
8	2	380 /3,642/	105	63	1,67

As shown, the results obtained confirm the considerations carried out for the benzene derivatives¹⁻³. Nitronaphthols-2 with conjugated systems absorb as one chromophore as evidenced by the high ratio of $\Delta\lambda_{X,Y}^{\text{exp.}}/\Delta\lambda_{X,Y}^{\text{calc.}}$ whereas for the other isomers their absorption is similar to the additive model of single chromophores, although the overall nature of the spectrum demonstrates quite clearly the domination of the nitro chromophore /FIG.1/. The K bands found are merely the ones corresponding to the K bands of nitronaphthalenes absorptions and only some of them exhibit shoulders corresponding to the residual absorption of naphthol-2.

The effect of solvent polarity on the positions and intensities of the absorption bands in the UV and Vis spectra of mononitronaphthols-2 and their acylated derivatives seems to be interesting. During preliminary studies a highly-coloured solution was found to be formed during dissolution of samples in the concentrated sulphuric acid. However, the product obtained was too unstable /the "life-time" of the product was shorter than the period necessary to measure a full UV-Vis spectrum/. This suggested that the product obtained

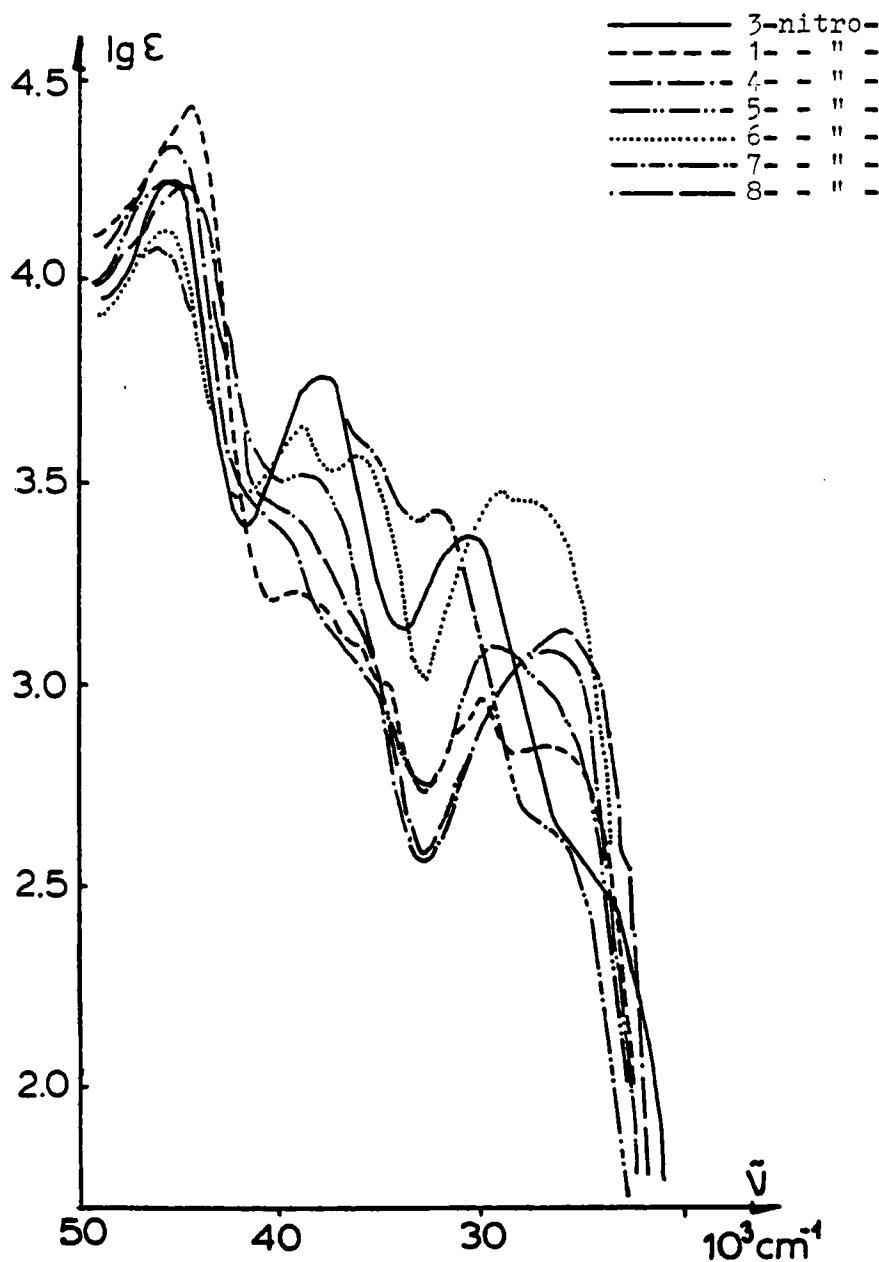


FIG. 1

Electronic spectra of nitronaphthols-2.

TABLE 2

The absorption bands for 1-nitronaphthyl-2-derivatives:
 1/ 2-hydroxy, 2/ 2-acetoxy, 3/ 2-mesyloxy - depending
 of solvents.

No.		n-hexane					
1/	220	249	275s	285s	305s	320	337,5 385
2/	220	244	260s	275s	285s		
3/	221	295s	320	350			
dioksane							
1/	223	251	275s	285s	337,5	385	
2/	222	253	290s	307,5	321	350s	
3/	208s	223	252	280s	290s	310s	320 350
HClO_4 72%							
1/	194,5	207,5s	221	254	288s	410	600
2/	207,5s	221	253	300	410	610	700
3/	193	207,5s	221,5	260	328	353	
conc. H_2SO_4							
1/	200 ^x \mathcal{E}_i	227,5 ^x D	252,5 ^x \mathcal{E}_i	292,5s ^x \mathcal{E}_d	313 ^x \mathcal{E}_d	395 ^x \mathcal{E}_d	475 ^x D
2/	195	202,5	252,5	290	292,5	322s	400
					490	540	700
3/	195s	208s	221	248	325	375	

Remarks: s - shoulder; \mathcal{E} : i - increases, d - decreases; D - disappears; ^x - after 24h, ~~x~~ - after 10min. up to $\mathcal{E}_2 = 1/2 \mathcal{E}_1$, ~~xx~~ - after 10min.

is an ion-radical. This supposition was confirmed by a typical EPR spectrum measured.

Studies were also initiated on the effect of acidic groups in the acylated derivatives of mononitronaphthols-2 on their UV-Vis spectra. Preliminary results obtained for 1-nitro-2-oxynaphthalenes are summarized in Table 2.

REFERENCES

1. L. Doub, J.M. Vandenbelt, *J. Am. Chem. Soc.*, 69, 2714 /1947/; *idem, ibid.*, 71, 2414 /1948/; *idem, ibid.*, 77, 4535 /1955/.
2. L. Skulski, *Bull. Acad. Polon. Sci., Ser. Sci. Chim.*, 10, 201, 207 /1962/; *idem, ibid.*, 12, 719 /1964/.
3. J.C. Dearden, *J. Org. Chem.*, 29, 1821 /1964/.

RECEIVED 3-14-78

ACCEPTED 4- 5-78